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SOLVENT DEPENDENCE OF PHTHALOCYANINE REDOX EQUILIBRIA

A.B.P. LEVER* and P.C. MINOR

Department of Chemistry, York University, Downsview (Toronto), Ontario,

Canada, M3J IP3.

The phthalocyanines and porphyrins represent a unique series of complexes

which can be varied almost inexhaustively via change of substituent, metal

ion, axial ligand, spin state and coordination number, yet retain the basic

MN4 unit. Detailed analysis of the variation of redox equilibria with each

of these factors provides rare insights into the nature of metal ligand

binding. Such data are therefore of fundamental value in the development of
JI

coordination chemistry, and in the elucidation of the redox (electron transfer,

I oxygen binding) roles played by metal ions in biological systems.

During recent years, there has been extensive study of the redox

F" equilibria exhibited by metalloporphyrin derivatives [e.g. 1 - 16], but

less has appeared concerning the behaviour of the metallophthalocyanines

[17 - 24]. We present here a preliminary detailed comparison between the

redox chemistry of these two classes of compounds, with special emphasis on

solvent behaviour. Such a comparison should shed more light on the nature of

the metal ligand bond in each series.

In 1975 Davis and co-workers [1,2] demonstrated a marked solvent

dependence upon the various redox equilibria exhibited by iron and cobalt

porphyrins (see Table 1). In particular, they noted that oxidation of

iron(II) to iron(III) was favoured by DMSO relative to pyridine but that

the reverse was true for oxidation of cobalt(II) porphyrins to cobalt(III).

These workers also recognized that these solvents are axially coordinated

to the metal atoms, and that five or six coordinate complexes might be formed.

Recently Kadish and co-workers [5,12) have reported more complete data

I .4



on these systems and extended the study to manganese porphyrins [4]. Some

data on chromium porphyrins also exist [14,15].

Similar data for iron [18,19], cobalt [21,22], manganese (22] (Table 2)

and chromium [22] phthalocyanines have now accumulated, and it may be

appropriate to begin a detailed comparison of these data sets [25].

Many factors determine redox couple energies. These include coordination

number, geometry and spin state of each partner, the relative binding of

solvent to each partner, and whether the solvent replaces any group upon

complexation, the possible binding of counter-ion, the existence or

absence of ion pairing, solvation energies, solvent polarity and steric

effects.

Tables 1 and 2 include phthalocyanine and porphyrin redox energies for

the M(III)/M(II) couples, where M - Cr, Mn, Fe and Co, and M(II)/M(l) for

M - Co and Fe, together with pertinent structural and magnetic data. Since

direct magnetic measurements (static or ear) of the relevant solutions have

not always been undertaken, magnetic data in Tables 1 and 2 are also deduced

from solid state magnetism and from chemical experience.
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TABLE 1

METALLOPORPHYRINS - Survey of Electrochemical, Geometric and Magnetic

Data as a Function of Solvent. Tetraphenylporphyrin data.
SC a , ab a b

-1,M(III)/(II) CNa. M(II) /(I) CNaMag

0 M(II) M(II)

CHROMIUM

DMSO -1.14 ?6

MANGANESE

CH2Cl2  -0.34 4 hs 5 hs

DMSO -0.23 6 ha 6 he

PYRIDINEd -0.23 5 ha 5 ha

IRON

CH2 C.cz -0.29 4 is 5 is -1.06 4 Is

j DMA -0.11 5 ha 6 ha -1.08 4 is

DMSO -0.11 ?6 ?6 -1.17 4 Is

PYRIDINE +0.17 6 1. 6 is -1.48 4 is

COBALT

CH2Cl2  +0.75 4 1. ? -0.855 4 ls

DMA +0.32e 5 is 6 Is -0.77 4 Is

DMSO +0.06 5 is 6 la -0.84 4 is

PYRIDINEd -0.37 5 is 6 is -1.03 4 is

FOOTNOTES: aCoordination number; bMagnetism - ha - high spin, is -

intermediate spin, is - low spin; COctaethylporphyrin; dAddition of approx.

1 molar pyridine to a poorly coordinating solvent; eIrreversible.

Supporting electrolyte is tetrabutylammonium perchlorate in most cases.

Data abstracted from refs. 1 - 17. The coordination numbers and spin

mentioned in these Tables are those believed to be true under the condition

of the electrochemical experiment. When the solution conditions change,

or in the solid state, other spin states and coordination numbers may

certainly occur.



TABLE 2

METALLOPHTHALOCYANINES -Survey of Electrochemical, Geometric and

Magnetic Data as a Function of Solvent.

*M(III)/M(II) CN8 Magb M(II)/(I) CN.Mag
0 0

M(II) M(III) E.~ M(I)

MANGANESE

DMF -0.138 6 is 76 Is

DM50 -0.078 6 is ?6 is

PYRIDINE +0.004 6 is ?6 is

* IRON

ClNapC 40.19 ?4 is 4  is

d
DMA +0.377 6 is ?-0.55 ?5

DMS0 +0.457 6 is ?d -0.71 5 is

d
PYRIDINE +0.661 6 is ? -1.07 5 Is

COBALT (TSPc)

ClNapC +0.77 4 is ?4 is

e
DM7 +0.427 76 is 6 Is -0.497 4 is

DMSO +0.455 ?6 is 6 Is -0.597 4 Is

PYRIDINE +0.040 6 is 6 is -0.709 4 is

4-Et-PYRIDINE +0.007 6 Is 6 1. -0.725 4 is

3-Ci-PYRIDINE +0.163 6 Is 6 is -0.638 4 Is

FOOTNOTES: absee table 1is M~c from ref. [231; dSpecies very unstable;

eIrreversible. *All data from ref. [19,22] except for chloronaphthalene

(CiNap) data.



These redox data are also presented graphically in figs. I and 2 as a
F

function of the Donicity Number 126] (DN) of the solvent. In most cases,

there is a remarkably good correlation between Donicity Number and Eh,

whereby increasing donicity results in an almost linear increase, or decrease,

" in sensitivity towards oxidation, depending upon the couple concerned.

Although we draw linear plots, it is evident that further data must be

accumulated before their significance can be uncategorically accepted. Factors

I such as solvation energy and entropy, which must play a role, are obscured

by such plots.
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Fig. 1. A plot of the cobalt and iron(II)/(I)
coupled versus Donicity. The circles are
tetraphenylporphyrin, the triangles (hatched

lines) are phthalocyanine((Co(t-TsPc) and FePc).
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'Fig. 2. A plot of iron, cobalt and manganese(III)/(II)
couples versus Donicity Number. We also display
a plot of the potentials for (X-Py) (TPP)Fe(III)/Fe(II)
versus the pK aof 1-Py [12].2

For all systems studied to date, a given metalloporphyrin is always

easier to oxidize than the corresponding metallophthalocyanine. This may

be ascribed to the smaller hole size and better it acceptor and poorer a

characteristics of the phthalocyanines relative to the porphyrins (19]. We

now consider specific systems.

Chromium: Very little has yet been published upor chromium. It is-_

too early to draw any conclusions save to point out the astonishingly

greater stabilization of chromium(II) in the phthalocyanine series.

Chromium(II) phthalocyanine can be obtained simply by dissolving hydroxy-

chromium(iII) phthalocyanine in pure dry pyridine under vacuo [27], yet the

potential required to reduce chromium(I) octaethylporphyrin is in excess

of -1.0 volts 115): detntled solvent h(,havio'lr Is not yet available.



Manganese: In general the ianganese(IIl)/(1l) potentials in both series

exhibit relatively little sensitivity to solvent, with variations of only

1 100 my. Both Mn(II) and Mn(III) porphyrins are bel4eved to be axially

coordinated by only one solvent molecule (or counter ion) xnd therefore

five coordinate in pyridine but presumably four coordinate for Mn(II) in

dichloromethane. There is some evidence that in DMSO, Mn(III) is six

coordinate, i.e. (DMSO)2Mn(III)(TPP)+ [4b]. In coordinating solvents both
or2

Mn(II) and Mn(III) porphyrin species are high spin. The very small

differences in potential between the dichloromethane and pyridine porphyrin

systems emphasizes the relative solvent insensitivity. The phthalocyanine

system is certainly low spin in pyridine [28], and presumably six coordinate.

However, binding is fairly weak since the species PcMn(II)(Py)2 cannot be

isolated [291.

Increasing donicity results in a stabilization of the manganese(II)

state relative to Mn(III), but the effect is small (see discussion below).

HBoth series form oxygen adducts. The greater preference for lower oxidation

states in the phthalocyanine complexes provides a simple rationale for the

observation of a manganese(III) phthalocyanine oxygen adduct, PcMn(III)(02 )

[30], compared with a manganese(IV) porphyrin oxygen adduct TPPMn(IV)(022- )

[31]. The Mn(II)/Mn(I) couple cannot be accessed prior to ring reduction.

Iron and Cobalt: The two couples Co(II)/Co(I), and Fe(Il)/Fe(I) show

remarkable similarity with almost the same degree of sensitivity towards

solvent being expressed in both series (see figs. 1 - 3). Increasing

donicity causes a relative stabilization of the higher oxidation state an

effect explainable by a simple o mechanism. In the cobalt case, this must

be due to increasing stabilization of Co(II) since the Co(l) species is

" almost certainly unsolvated. Viewed from LCo(II)S, the weaker the donicity

* of L, the lower the energy of z2 , the more readily it will accept an

electron to form LCo(1). The same mechanism may be applied to explain the

Fe(Il)/Fe(I) porphyrin data. The greater r acidity of the phthalocyanine

L7.--**~..*-~.-**~.--. 
.



unit generates A five coordinate solvent bound (S)Fe(Ipc species [19] where

destbilzaton o th z2 electron (low spin d) can contribute to the

destabilization of the iron(I).

Co(Tspc) /x-Pyridine

Ththalocyanine Cobalt Series - offet Of PKa ~~

substituted pyridine solvents upon \

0.2
3-Cl

Y V

0.1

0 --0.6

-4, -0.7
PCO(II)/CO(IM.

2 3 4~ PK 6

'Fig. 3. A plot of (X-Py) 2 (TsPc)Co(III)/Co(II)
and %'X-Py) 2(TsPc)Co(II)/(I) couples versus the

pK aof X-Py.

The Fe(III)/Fe(II) couple behaves in a similar fashion in both

porphyrins and phthalocyanine, with increasing donicity favouring the

relative stabilization of iron(II). However, ini an elegant study, Kadish

[12] has demonstrated an apparent reverse phenomenon when binding substituted

pyridines -to iron porphyrins, where the most basic pyridines favor

binding to iron(III) and cause a cathodic shift in % (see fig. 2). Where
no change in coordination number Is involved, as is probably the case here,



the observed potential is given by:

s us 0.059 K
E E lo ox

ii n red

where K and K are the binding constants for the reactions:ox red .

Fe(III)Pc+ + 2S - S Fe(III)Pc+  K
S 2 ox

Fe(II)Pc + 2S S Fe(II)Pc K

and E8 and E
us are the standard potentials for the solvated and unsolvated

species respectively. In general, binding to iron(III) will be greater than

to iron(II), and both binding constants will increase with increasing pKa*

Moreover binding to the higher oxidation level will usually increase to a

greater extent with increasing pKa . The cathodic shift obtained by

increasing the pKa of the substituted pyridine is explained by this latterat

phenomenon.

The solvent donicity sequence requires that the ratio K /K
ox red

decreases in the sequence DMA > DMSO > Pyridine. It is not unreasonable

that the soft pyridine ligand would show a greater preference for the soft

iron(If) centre, than the harder oxygen ligands, and form a more covalent

bond.

Invoking the E and C model of Drago (32], and assuming that entropy

changes are similar for all three solvents, the data are consistent with

the fact that the electrostatic component (E a) is similar for all three

solvents, but the covalent component (C a) is much greater for pyridine than

for the oxygen donor solvents. Increased -r back donation in the pyridine

iron(II) complex, and its synergistic effect upon o bonding, enhances

this covalent interaction [19]. The substituted pyridine (pK ) sequences

in fig. 2 and 3 are a consequence of changing the E parameter with roughly

'constant C

The same argument can be applied to the Mn(III)/Mn(II) system but

evidently the covalent binding by Mn(II) is less important, consistent with

its slightly larger .iz,. The sin;lI cr s,,. t fvlt y tow:irds donfrity in the



high spin putphyrin series, relative to the low spin phthalocyanine series

probably reflects the expected decreased covalency of the high spin ions.

The cobalt(III)/cobalt(II) couple is less well behaved, and frequently

yields irreversible waves. Under the conditions of the electrochemical

experiment the cobalt(II) porphyrins are five coordinate, existing as low

spin (S)Co(II)Por [5]. Increasing donicity causes a decreasing stabilization

of cobalt(II). Unlike the iron(III)/iron(II) case, low spin cobalt(II)

has a half occupied z2 orbital, i.e. configuration (xz,yz,xy)6 (z This

z2 orbital points towards the solvent and is destabilized thereby. The

conventional wisdom [7] explains the decreasing stability of cobalt(II)

with increasing solvent donicity via destabilization of the z2 electron.

The destabilization of z2 is a more important effect here, and in the

Fe(II)/Fe(I) couple, than any arguments which might be based on changing

covalency in these couples.

Esr data reveal that Co(II)Pc (e.g. tetrabutyl or tetrasulphonyl

substituted)is six coordinate, low spin, in pyridine solution [36], a

not uncommon coordination number for cobalt(II) phthalocyanines [37).

Fairly extensive solvent data are displayed for cobalt phthalocyanine

in Table 2 and figs. 2,3. Increasing donicity causes stabilization of

cobalt(II) in parallel with the porphyrin series. However, perhaps

because of the irreversibility in the case of DMA, the relationship is

not linear. The pKa relationships (fig. 3) are precisely linear for both. [.
cobalt couples and reflect the change in electrostatic binding as previously

observed in the iron porphyrin series by Kadish [123.

Cobalt phthalocyanine is known to form both five and six coordinate

adducts [38,39]. The irreversibility in DMA may reflect the existence

of (DMA)Co(II)Pc which becomes six coordinate upon oxidation. Electro-

chemical differences affecting both redox potential and electron transfer

kinetics, as a consequence of coordination number, in the cobalt phthalo-

cyanine series, are currently being investigated [22).

- -- ---- - -- *---- - - .----.-- MAW*



Iron(If) phthalocyanine is air stable in pure DMA, DMSO or pyridine, but

oxidizes in aerated D1A containing chloride ion 119). The latter ion causes

a 500 my cathodic shift in (to -0.153 V vs sce) relative to perchlorate

ion (E - +0.377) [19]. Various oxygenated solids have been obtained by

precipitation from aerated pure DMG [33] or DHSO [34], but these are

presumably stabilized by lattice energy effects. Direct oxygenation occurs

in pure concentrated sulphuric sold in which the ring is extensively

protonated [35]. A wave at 0.4 V, in 852 sulphuric acid, is probably due to

the Fe(1II)/Fe(II) couple [24]. The cobalt(II) porphyrins are very air

sensitive and readily form oxygen adducts. Cobalt(II) phthalocyanines are

generally air stable, but do react with oxygen when cooled in non-donor

solvents [39]. These observations are fully consistent with the redox

behaviour of these species as interpreted In terms of the nature of the metal

ligand bond.
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